
Game Audio via OpenAL

Summary

In the Graphics For Games module, you learnt how to use OpenGL to create complex graphical
scenes, improving your programming skills along the way, and learning about data structures such as
scene graphs. In this workshop, you’ll see how to add sounds to your game worlds using the OpenAL
sound library.

New Concepts

Sound in games, OpenAL, PCM audio, binary file formats, FourCC codes, WAV files, limited resource
management

Introduction

Audio has played an important part in gaming almost as long as there have been games to play - even
Pong back in 1972 had simple sound effects. We’ve moved a long way from then; the 80s brought
dedicated audio hardware such as the Commodore 64’s SID chip that could play 3 simultaneous syn-
thesised sounds, and later the Amiga brought the ability to play audio samples to the home gaming
market. In modern gaming hardware, we can expect to hear many simultaneous sounds and music
tracks, often in surround sound. Game developers now employ dedicated sound engineers that will
carefully adjust the sounds in each game release to create an immersive aural experience - making
sure that each individual sound is uniquely identifiable and correctly equalised, and that every music
track suits the situation they will be played in.

At the heart of a game’s audio experience is the code that plays back the game sounds, and cal-
culates which speakers they should use - the sound system. Although we can’t hope to compete with
the complex sound systems of AAA games, we should still be able to make a robust, simple system
for the addition of sound in our 3D games, and that’s what this workshop will assist you in creating.

Audio Data

Before we even begin to explore how to add in-game audio to our games, it’s worth while having a
brief overview of what sound actually is. Sound is simply the propagation of pressure waves through
a medium, such as water or air. If we were to take a look at a sound wave using an oscilloscope, it’d
look something like this:

A single continuous wave, with an amplitude (how large the peaks and troughs of the wave are -
the larger the amplitude, the louder the sound), and a frequency (how often these peaks and troughs
occur - the higher the frequency, the higher pitched the sound is).

1

This poses a problem for computers. Sound waves are continuous, yet computers store discrete,
digital values - so how do we store our game audio? The answer is Pulse-Code Modulation, or PCM
for short. To digitally represent sound, the sound is regularly sampled, and its amplitude stored as
a value. PCM data has two important components - sample rate (measured in hertz, meaning cycles
per second, just like a computer’s CPU) which determines how often a sample of the sound is taken,
and bit depth, which determines the range of amplitude values that can be stored. As there is limited
bit depth, and so only a finite number of values that can be stored, the sampled values of a sound
wave are quantised - rounded to the nearest value that the bit depth can hold. Here’s an example of
our sound wave being transformed into PCM data:

Clockwise from top left: A section of the original analogue wave, low bit depth and frequency,
medium bit depth and frequency, hight bit depth and frequency

You should be able to see how both bit depth and sample rate determine the final quality of the
digitised sound. To give you an idea of what the commonly used values for bit depth and sample rate
are, audio CDs encode their data at a sample rate of 44,056hz (over 44k samples a second!), and a bit
rate of 16 (65,536 unique values). The audio hardware in your computer can natively handle PCM
data, and can turn it back into analog data, for outputting via speakers or headphones.

WAV Files

One of the most popular file formats to store PCM data is IBM / Microsoft’s WAV file. Unlike the
text files you’ll have been reading and writing to so far, WAV is a ’binary’ file format, meaning it
contains no human-readable data. Well, almost. WAV files use something known as FourCCs, short
for Four-Character Code, to identify the start of data structures within the file, commonly known as
’chunks’. As the name suggests, a FourCC is a simple 4-byte identifier, with the byte values in the
range that represents readable characters. If you were to open a WAV file in a text editor such as
Notepad++, you’d see the phrase RIFF at the start of the file, and then WAVE a few characters
later - FourCCs that identify the file is of type RIFF (a container file format, meaning it could contain
any sort of binary data), with WAVE data in it.

Here’s a more detailed example of a WAV file’s contents:

2

After the initial file header containing RIFF and WAVE, we have a number of chunks, each of which
has a FourCC, a size value, and a number of bytes matching that size value - this structure allows
the file to be read in correctly, and searched through if necessary. WAV files can have many types of
chunk, containing information on MIDI playback, que indicators within the file data, and even space
for text notes. The most important two chunks, and the only two we’ll be processing in the code later
on, are the format chunk, and the data chunk. Here’s what the format chunk looks like:

Like other WAV chunks, it begins with a FourCC and a size, before defining a number of important
characteristics on the PCM data contained within the WAV. We can determine the number of chan-
nels the PCM data has (i.e. whether it is mono, stereo, 5.1, and so on), the sample rate, and bit
rate. WAV files can contain either uncompressed or compressed PCM data (although uncompressed
is far more common), so a compression code is also defined. Format chunks sometimes also specify
additional data to support the compression type, so another size value is defined, determining the
number of this extra data.

Finally, this is what the data chunk contains:

Not much to it! It’s basically just a big lump of binary data, containing either compressed or
uncompressed PCM data. All that’s really worth pointing out is how the number of channels is
handled by the PCM sample data: for each given ’time slice’ of data (remember the 44,056 samples
per second for a CD?), the PCM data for each channel is stored, one after the other, then the next
samples, and so on. This interleaving of sample data per channel allows multichannel sound to be
easily ’streamed’ from the data source, without having to read data from different parts of the file.

Audio Hardware

Much as with graphical output, sound is usually handled by dedicated hardware, which may have a
wide variety of capabilities. Inexpensive ’on board’ sound chips might be little more than a digital to
analogue signal converter connected to some audio jacks, while more expensive hardware may have
support for natively decoding compressed audio, and contain sophisticated signal processors to add
effects such as reverb. Higher end sound hardware will have a number of discrete channels, or voices
that it can support (that is, the number of concurrent PCM sounds it can process into analogue data
and output at one time, a value that is generally independent from whether the PCM data is mono,
stereo etc.), while lower-end hardware might perform all PCM data mixing in software, outputting to
a single combined channel. Depending on the exact audio features of the hardware, there might even
be some amount of dedicated RAM, to buffer sound samples for higher performance.

3

OpenAL

As with graphics cards, the majority of the varying hardware features of sound devices are hidden
behind an API, which will in turn target the vendor-provided drivers of the hardware. There’s a few
of these APIs around: DirectSound for Windows, XAudio2 for Windows and Xbox 360, and ALSA
for Linux.

One of the most pervasive audio APIs is OpenAL, currently hosted and maintained by Creative Labs.
As its name suggets, OpenAL aims to be for audio what OpenGL is for graphics - a cross-platform,
easy to use API, that supports both hardware acceleration, and software fallbacks where necessary.
Unlike OpenGL, which has an Architecture Review Board to discuss features and improvements to
the language (currently handled by the Khronos Group), no such collaborative entity currently ex-
ists for OpenAL, with all recent development being undertaken by Creative Labs, developers of the
SoundBlaster series of sound cards. Like OpenGL, OpenAL is a giant ’state machine’, with its API
functions adding commands to an internal stack, which are popped off one after the other as they are
processed.

Implementations of OpenAL exist for Windows, Apple Mac and iOS devices, Android, and the Xbox
360. Sony’s Playstation 3 has an OpenAL-like sound API called x, making OpenAL a popular choice
for cross platform programs, and a firm understanding of how to use it an advantage for a budding
game developer.

OpenAL allows a number of sound sources to be played in 3D space, with all of the processing
required to determine the volume of sound required in each speaker to generate the spatial effect han-
dled automatically. It supports a number of parameters to determine how samples are played back,
and how distance from a sound source effects sound playback volume. OpenAL defines a number of
constructs to control the eventual sound output - the Device, the Context, the Listener, Sources, and
Buffers.

The Device

As its name implies, the device represents your audio hardware. You don’t need to worry much about
the device other than selecting one to use when initialising your sound system - you may have multiple
sound devices in your PC, and some hardware displays itself as multiple devices for hardware and
software PCM playback, so a device must be chosen - OpenAL can be instructed to select the ’best’
device it finds, though.

The Context

Similar to OpenGL, OpenAL uses a context to maintain the relationship between the data structures
used to calculate the final outputted audio. Generally you’ll only have one context, which will be
created when you initialise your application, and destroyed on its exit.

The Listener

In order to calculate the volumes and directions of the sounds your application plays in 3D space,
OpenAL needs a frame of reference - the listener. Think of this as being where the microphone is
positioned - you’ll probably have the listener set to the same position as the camera, but you don’t
necessarily have to. In OpenAL the listener object keeps track of things like position, orientation,
and master volume. OpenAL only has a single listener, so you don’t even have to create or delete it -
OpenAL just has a set of API functions to directly handle listener properties. Rather than the matrix
representation we use in OpenGL to keep track of the camera, in OpenAL the listener is defined by
three vectors - a position, a ’forward’ direction, and an ’up’ direction. We need an ’up’ component to
a listeners component as a single direction vector doesn’t provide any information as to the rotation
around that vector - imagine that for some reason you’re standing on your head, the sounds you hear
to either side will be inverse to if you were being sensible and standing the right way up!

4

Sources

Next, we have sources. Source objects define where a sound is playing in 3D space, keeping track of
position, direction, and information like whether the sound is looping indefinately, its pitch, and its
volume. We only need a direction vector for a sound source, as an emitted sound has no concept of
an ’up’ vector - if you turn a speaker upside down, it’ll still sound the same. Sources also keep track
of which sound sample they are playing, and and which position in playback they are at.

Buffers

Buffers are simply the OpenAL structure for PCM data - they keep track of bit rate, sample frequency,
as well as holding the actual PCM data. Unlike listeners and sources, buffers aren’t a property of a
single context, but defined at the device level - all of your OpenAL contexts share the same PCM data.

An overview of OpenAL and its data structures

Positional Audio

A good 3D game requires audio that is accurately placed in 3D space - it helps immersion, and helps
the player locate the sources of sound. To create the effect of a sound being in 3D space, its volume
is changed as the player moves away or towards its source, and is panned between the left speaker
/ headphone to the right in accordance to the relative position and orientation between the player
and the sound source. So a sound that is directly to the left of the player is played almost entirely
out of the left speaker, while a sound in front would be heard in the left and right speaker equally
(or perhaps out of the center speaker in a 5.1 audio setup), and if the player spins on the spot, the
sound pans across the speakers to give the illusion of the sound moving in space. For this reason,
OpenAL can only play mono sounds (those that have a single channel)in 3D space - there’s no way
to accurately mix multiple channels in 3D space. A sound that has multiple channels will always be
played without any 3D mixing in OpenAL, so if you add a sound to your game that doesn’t seem to
sound right, check how many channels it has!

Creating an Audio System

Like OpenGL, OpenAL is just an API - if you want to actually use it in your games, you’re going to
have to do a bit of coding, and create some classes that actually target the API. How to intuitively add
audio capability to your games is also something that takes consideration - the audio system should
be able to ’look after itself’, and not require lots of rewriting code.

Consider how sound is actually used in the games - what types of sound are there? There’s music,
which probably loops around, or changes track; there’s ’one off’ sounds triggered by in-game menus
(which are generally ’global’ in that they aren’t calculated in 3D space, just sent straight to the
speakers); and then there’s the actual ’in game’ audio in 3D space - it too might be ’one off’ (the

5

sound of the player’s gun firing), attached to an in-game object (a character speaking while walking
down a corridor) or looping ambience (a dripping tap, the sound of rain hitting a window etc). An
audio system should be able to handle all of these cases with ease.

Performance

Finally, there’s also the issue of performance to consider. Earlier it was mentioned that some sound
hardware can handle multiple, independent PCM sound decodings, allowing several voices to be mixed
in hardware at once. Well, what if there isn’t any hardware capability? In the drivers, all of the sounds
being played will be mixed together in software before being sent to the sound card. In either case,
there’s a limit to the amount of sounds we can process at once - either the limit of the sound hardware’s
voices, or how many sounds can be mixed before performance starts to drop. In OpenAL, this software
mixing is limited to a maximum of 128 sources (and may be less when dealing with hardware-only
mixing), so we can’t just throw sounds at the audio system and expect everything to play as antici-
pated - we must treat OpenAL sources as a limited resource, and only give them to ’important’ sounds.

So, what counts as an important sound? First off, we want to cull any sounds that are too far
away - a mouse sneezing 100 miles away probably doesn’t warrant taking up one of our precious sound
sources! OpenAL defines each active sound source as having a radius, used to determine how loud
a sound should be - outside of this radius, the sound is considered to be silent, while the sound gets
louder as the listener gets closer to the center of the radius.

That’s the first thing we’ll get rid of, then - sounds that the listener is too far away from to hear.
That’ll probably drastically reduce the number of sources we need! But we might still run out of
free sources - perhaps the player is hammering a button that makes a beeping noise, or the game
is running on a mobile device with a limited number of channels. In such cases, we still need to be
able to sort sounds. Imagine our audio system only have a single channel left, which sound should
it play - a sneezing mouse right next to you, or the sound of the enemy firing his gun at you from
behind cover up ahead? If we only sorted by radius, perhaps the mouse with the snuffly nose would
be heard, and that annoying camper gets to headshot you in silence. As well as radius, it’s good if
sounds have a priority as well - a simple integer value will do, with higher values being assigned to
more important noises. With both radius and priority taken into account, it’s far more likely that the
important sounds will receive a source.

It’s worth noting that the process of assigning one of the limited audio sources available is a con-
stant process - as sounds complete, sources should be returned to the resource pool to use elsewhere,
and as the player and game objects move about, sounds may move beyond their hearing radius. So,
just as the Renderer class must process the scene hierarchy every frame in order to determine what
you should see, a well-behaving sound system will process it’s entities every frame to determine what
you should hear.

Integration

The previous sections have provided an overview of the considerations to make when designing and
building sound playback capability, but what about the practicalities of implementing it in a game
engine? In the previous few modules, we have been building up our own simple game engine, with sup-
port for graphics rendering and rigid body physics, so lets try and implement a sound system into that!

You should now be pretty familiar with the idea of ’subsystem’ classes being connected to our game
by some sort of controlling class - our Renderer class wrapped up graphics rendering and was con-
trolled by SceneNodes, and our PhysicsSystem operated on RigidBodies. So it makes sense to follow
this design pattern again - we’re going to have a SoundSystem class that encapsulates an audio API
(in this case OpenAL), and which operates on a number of SoundEmitter classes, which are in turn
attached and detached using GameEntities. Our new class layout is going to look like this:

6

An overview of the new systems being introduced - new classes are in red

Once we’ve implemented these, we can add new GameEntities to the game world that can play sound
- a character speaking to the player might have a SoundEmitter to play back their vocals, while
another GameEntity might only have a SoundEmitter and not a SceneNode or a RigidBody - such
a class could be used to playback ’ambient’ sound around the player. As well as the SoundEmitters
created and attached via GameEntities, the SoundSystem is also going to be able to spawn temporary
SoundEmitters - useful for ’one off’ sounds such as aural feedback from your in-game GUI or gunfire
from the player’s weapon.

To play back sound data, we need some sort of class to load and process this data from files -
the Sound class. Finally, we are going to have a class to keep track of these loaded in Sounds - a
SoundManager. This class will have a collection of Sounds, and functions to load and retrieve them
- by encapsulating all of this functionality we can better keep track of data loaded into memory, and
prevent accidentally loading in a file multiple times.

Example program

To show off our new sound playback capability, we’re going to take another look at the code from
the Game Technologies module. In it, we started with a simple scene of a cube robot standing
on the ground. That’s not very exciting, so we’re going to make things a bit more interesting by
spawning some more GameEntities randomly throughout the world, that have SoundEmitters attached
to them, each of which plays a random sound. OK that’s still not a very interesting game, but it will
demonstrate how to get sound into your own (hopefully more interesting!) game projects.

The Sound class

We begin our example program by taking a look at how to implement WAV file loading, via the Sound
class.

Header file

We start off with the header file, as usual. We’re dealing with files and filename strings, so we have a
few STL includes. We also need to include the OpenAL API header file, as we’ll be using OpenAL
buffer constsructs. We’re also going to define a struct, FMTCHUNK, which defines the WAVE file
format chunk, described earlier - you’ll see how it’s used shortly.

7

1 #pragma once

2

3 #include <string >

4 #include <iostream >

5 #include <fstream >

6

7 #include "../ OpenAL 1.1 SDK/include/al.h"

8

9 using namespace std;

10

11 struct FMTCHUNK {

12 short format;

13 short channels;

14 unsigned long srate;

15 unsigned long bps;

16 short balign;

17 short samp;

18 };

Sound.h

Next, we have the actual Sound class itself, starting with some accessors for the data we’re going to
be pulling out of our WAVE files. Note how in this particular class, our constructor and destructor
are protected! We only want new Sounds to be created via the SoundManager class, which is going
to make sure we don’t accidentally load in duplicate WAVE files.

19 class Sound {

20 friend class SoundManager;

21 public:

22 char* GetData () {return data;}

23 int GetBitRate () {return bitRate ;}

24 float GetFrequency () {return freqRate ;}

25 int GetChannels () {return channels ;}

26 int GetSize () {return size;}

27 ALuint GetBuffer () {return buffer ;}

28

29 ALenum GetOALFormat ();

30 float GetLength ();

31

32 protected:

33 Sound ();

34 ~Sound(void);

35

36 void LoadFromWAV(string filename);

37 void LoadWAVChunkInfo(ifstream &file , string &name ,

38 unsigned int &size);

39

40 char* data;

41

42 float length;

43 int bitRate;

44 float freqRate;

45 int size;

46 int channels;

47

48 ALuint buffer;

49 };

Sound.h

8

Class file

The constructor and destructor for our Sound class are pretty simple - the only heap memory we’ll
be allocating is the data variable, which of course must be deleted in the destructor.

1 #include "Sound.h"

2

3 map <string , Sound*> Sound:: sounds;

4

5 Sound ::Sound () {

6 buffer = 0;

7 bitRate = 0;

8 freqRate = 0;

9 length = 0;

10 data = NULL;

11 }

12

13 Sound ::~ Sound(void) {

14 delete data;

15 }

Sound.cpp

Internally, OpenAL defines the contents of PCM data via a format enumerator, and it is useful
to be able to determine this format for a Sound instance. GetOALFormat will do just that - Ope-
nAL PCM formats define the bit rate, and channel count, so a couple of if statements (and ternary
statements!) will determine the correct OpenAL enumerator for a given sound. If for some reason the
loaded PCM data is of an unusual type (very high bitrate, or 5.1 channels, perhaps), it will return a
’safe’ default value to attempt to play the sound with.

16 ALenum Sound:: GetOALFormat () {

17 if(GetBitRate () == 16) {

18 return GetChannels () == 2 ? AL_FORMAT_STEREO16:AL_FORMAT_MONO16;

19 }

20 else if(GetBitRate () == 8) {

21 return GetChannels () == 2 ? AL_FORMAT_STEREO8:AL_FORMAT_MONO8;

22 }

23 return AL_FORMAT_MONO8;

24 }

Sound.cpp

Next, we’re going to define is GetLength - this simply returns the number of seconds of audio the
PCM data encodes. The equation isn’t hard to figure out - for a given amount of data, it’s length will
be that size divided up by the channels, frequency, and bitrate - and we’ll even keep that as a variable
so we only have to calculate it once!

25 float Sound:: GetLength () {

26 return length;

27 }

Sound.cpp

That’s all the basics of the Sound class out of the way, now for the tricky bit - loading in a WAVE file.
As described earlier, WAVE files are made up of chunks - so we need to create a loop that will iterate
over and process the file’s chunks. First though, we have to actually open the file, using an ifstream
- with an extra tag, ios::binary used to denote that we’re loading in binary data. If we can’t load the
file we instantly return, otherwise, starting on line 35, we start the process of loading in the WAVE
chunks. To grab the chunk info we’re going to use a little helper function, LoadWAVChunkInfo, which
will read the chunk’s FourCC and size into the local variables defined on lines 35 and 36.

9

With the chunk information loaded, we can check the FourCC - we’re only concerned about the
format and data chunks, but we also need to handle the WAVE header, which includes the FourCC
”WAVE” - we need to skip those four bytes, which we do using the ifstream function seekg (so called
because it seeks through the file to the desired position for the stream’s internal get pointer). Really,
we should check the validity of the file by reading these bytes and checking they equal ”WAVE”, but
for now we’ll assume that it’s a correct file structure.

If the chunk is a format chunk, we read in some data into a temporary FMTCHUNK struct, and
extract the bit rate, frequency rate,and number of channels from it. If it’s data, we just initialise
some memory, and read the file into it. Some WAVE files may be of a compressed format, in which
case we’d have to do some extra processing on the resulting data to turn it into OpenAL compatible
PCM data, but we’re going to assume it’s uncompressed for now - remember, we can check whether
it’s compressed data or not by checking the appropriate field in the FMTCHUNK struct.

If the chunk is of a type we aren’t interetested in (MIDI data, for instance) we just skip over it
via the seekg function (line 59). Once that’s all done, we close the file, as there’s nothing else we need
from it, so all we have left to do is work out the Sound’s length.

28 void Sound:: LoadFromWAV(string filename) {

29 ifstream file(filename.c_str(),ios::in|ios:: binary);

30 if(!file) {

31 cout << "Failed to load WAV file ’" << filename << "’!" << endl;

32 return;

33 }

34

35 string chunkName;

36 unsigned int chunkSize;

37

38 while(!file.eof ()) {

39 LoadWAVChunkInfo(file ,chunkName , chunkSize);

40

41 if(chunkName == "RIFF") {

42 file.seekg(4, ios_base ::cur);

43 }

44 else if(chunkName == "fmt ") {

45 FMTCHUNK fmt;

46

47 file.read((char *)&fmt ,sizeof(FMTCHUNK));

48

49 bitRate = fmt.samp;

50 freqRate = (float)fmt.srate;

51 channels = fmt.channels;

52 }

53 else if(chunkName == "data") {

54 size = chunkSize;

55 data = new char[size];

56 file.read((char*)data ,chunkSize);

57 }

58 else{

59 file.seekg(chunkSize , ios_base ::cur);

60 }

61 }

62 file.close ();

63 length = (float)size / (channels*freqRate *(bitRate /8.0f))*1000.0f;

64 }

Sound.cpp

10

The final function we need to define is LoadWAVChunkInfo. It takes in a reference to an ifstream,
string, and unsigned int, and reads 8 bytes from the ifstream, filling in the name and size references.

65 void Sound:: LoadWAVChunkInfo(ifstream &file , string &name ,

66 unsigned int &size) {

67 char chunk [4];

68 file.read((char *)&chunk ,4);

69 file.read((char *)&size ,4);

70

71 name = string(chunk ,4);

72 }

Sound.cpp

The SoundManager class

The Sound class is pretty simple, and is controlled by another very simple class - the SoundManager.
All it has is 3 static functions, and a static map - even its constructor and destructor are empty!
This is in fact an entirely static class - it has no member instance data or functions, and so there’s
no need to ever instantiate one, thus its constructor and destructor are also made protected, just
like the Sound class. It’s three static functions are pretty self explanatory - they Add a sound to
the static map, retrieve a sound, and delete all of the sounds in the map. As you should have
noticed, the SoundManager class has been made a friend of the Sound class, which enables it to call
its protected functions - in this case we’re using this ability to allow the SoundManager to call the
Sound constructor, as we only want Sounds to ever be made by the manager, for correct ’book
keeping’.

Header file

1 #pragma once

2

3 #include <map >

4 #include "../ nclgl/Sound.h"

5

6 using std::map;

7

8 class SoundManager {

9 public:

10 static void AddSound(string n);

11 static Sound* GetSound(string name);

12

13 static void DeleteSounds ();

14 protected:

15 SoundManager(void);

16 ~SoundManager(void);

17

18 static map <string , Sound*> sounds;

19 };

SoundManager.h

Class file

The first function we’ll look at is the AddSound function - we need to ensure duplicated sounds don’t
end up in the static map, and we also need to make sure the data we’re loading in is valid. Checking
for duplicates is easy - our GetSound function is going to do that for us, so we can check the return
value of that and only create a new Sound if it is NULL. If it is NULL, we’re going to make a new

11

Sound, and check what file format the filename is. A fully fledged sound system might support many
different file formats, so our AddSound function needs to be able to handle them all, and call the ap-
propriate functions. For now, we’re going to add in WAVE file support, by using the substr function
on line 5 to extract the final three characters of the input file name - we’re going to assume if the file
extension is wav, then it is a WAVE file. If it is, we’ll call our LoadFromWAV function to extract the
PCM data from the file, and then call a couple of OpenAL functions.

As with OpenGL, OpenAL uses numerical ’names’ to identify its data structures, so, on line 10,
we generate a new buffer name using the function alGenBuffers. WAVE files don’t need much pro-
cessing beyond getting the PCM data and ancillary information such as bit rate and frequency out
of them, so we can buffer the data straight into OpenAL using the function alBufferData. Once the
PCM data is in OpenAL, we could delete the data of the Sound if we like, just remember to NULL
the pointer afterwards, so the destructor doesn’t break!

1 void SoundManager :: AddSound(string name) {

2 if(! GetSound(name)) {

3 Sound *s = new Sound ();

4

5 string extension = name.substr(name.length ()-3,3);

6

7 if(extension == "wav") {

8 s->LoadFromWAV(name);

9

10 alGenBuffers (1,&s->buffer);

11

12 alBufferData(s->buffer ,s->GetOALFormat (),s->GetData(),

13 s->GetSize (),(ALsizei)s->GetFrequency ());

14 }

15 else{

16 cout << "Invalid extension ’" << extension << "’!" << endl;

17 }

18 sounds.insert(make_pair(name , s));

19 }

20 }

SoundManager.cpp

Our final two static functions are GetSound and DeleteSounds. As their names suggest, GetSound
will get a Sound instance from the static map, or return NULL if no Sound paired with the given
name exists, while DeleteSounds will empty and delete the contents of the map. Why do we need to
do this? As we’re not deleting them anywhere else, our Sound instances will otherwise persist, and
won’t be deleted. Even if the static map itself is deconstructed when it falls out of scope on program
exit, maps don’t explicitly delete their contained objects, so it must be done manually.

21 Sound* SoundManager :: GetSound(string name) {

22 map <string , Sound*>:: iterator s = sounds.find(name);

23 return (s != sounds.end() ? s->second : NULL);

24 }

SoundManager.cpp

25 void SoundManager :: DeleteSounds () {

26 for(map <string , Sound*>:: iterator i = sounds.begin ();

27 i != sounds.end (); ++i) {

28 delete i->second;

29 }

30 }

SoundManager.cpp

12

The SoundEmitter class

Now we have the code to load in sounds, we need to be able to play them! To do this, we’re going
to make a SoundEmitter class, which will act as the connector between our in-game entities, and the
SoundSystem class we will be looking at shortly.

Header file

First off, some includes - we need to know about SceneNodes, Sounds, and the SoundSystem class
we’re going to create later. Then, we define an enum called SoundPriority - we’ll use this to assign
an easy to remember value to represent how important a sound is. Using named constants removes
the ambiguity around using a integer for priority - is 0 a low or a high priority? It’s much easier to
work this out if it equates to the enum SOUNDPRIORTY LOW !

1 #pragma once

2 #include "scenenode.h"

3 #include "Sound.h"

4 #include "SoundSystem.h"

5

6 enum SoundPriority {

7 SOUNDPRIORTY_LOW ,

8 SOUNDPRIORITY_MEDIUM ,

9 SOUNDPRIORITY_HIGH ,

10 SOUNDPRIORITY_ALWAYS

11 };

12

13 struct OALSource;

SoundEmitter.h

Now on to the SoundEmitter class itself. For convenience, we’re going to have a couple of construc-
tors - a default one, and one which takes a Sound to start playing immediately. This gives us a bit of
choice in how we use our SoundEmitters - things like ambient sound emitters in the levels of your game
might have a Sound attached to them straight away, while maybe an NPC will have a SoundEmitter
for when he or she speaks one of many different phrases. As we have multiple constructors, we’re
going to keep the initialisation common to both of them in another function - Reset. We also have a
destructor, as usual.

14 class SoundEmitter {

15 public:

16 SoundEmitter(void);

17 SoundEmitter(Sound* s);

18 ~SoundEmitter(void);

19

20 void Reset ();

SoundEmitter.h

Next, some public accessors. Our SoundEmitter needs to be able to get and set a Sound to play,
and a priority, at the least, but we’re going to add a few extra features in too - our SoundEmitter is
going to be able to have a volume set, be able to loop if we want, and have a maximum radius in
which it can be heard. As with our RigidBody class, our SoundEmitter class will also have a target -
but this time, instead of using this variable to set the position of a SceneNode, we’re going to use it to
get the position, so we know where in our game world the sound is playing from. As all of these will
be trivial in terms of their compiled code, we’re going to make all of these accessor functions inline, too.

13

21 void SetSound(Sound *s);

22 inline Sound* GetSound () {return sound;}

23

24 inline void SetPriority(SoundPriority p){ priority = p;}

25 inline SoundPriority GetPriority () {return priority ;}

26

27 inline void SetVolume(float volume) {

28 volume = min (1.0f, max (0.0f, volume));

29 }

30 inline float GetVolume () {return volume ;}

31

32 inline void SetLooping(bool state) {isLooping = state;}

33 inline bool GetLooping () {return isLooping ;}

34

35 inline void SetRadius(float value) {

36 radius = max (0.0f, value);

37 }

38 inline float GetRadius () {return radius ;}

39

40 inline float GetTimeLeft () {return timeLeft ;}

41

42 inline OALSource* GetSource () {return currentSource ;}

43

44 void SetTarget(SceneNode *s) { target = s;}

SoundEmitter.h

As we’re dealing with a limited number of OpenAL sources, we need functions to attach and detach
them from a SoundEmitter, and how to compare the priority of two SoundEmitter, so that we can
sort them. We also need a function to update the internal state of the SoundEmitter - how long of
its current sound is left to play, the current position and volume of the OpenAL source attached to
it, and so on. We also have a number of member variables, including a pointer to an OALSource
struct - we’ll define that when we define the SoundSystem later, but as you can probably guess, it
encapsulates an OpenAL source.

45 void AttachSource(OALSource* s);

46 void DetachSource ();

47

48 static bool CompareNodesByPriority(SoundEmitter *a,SoundEmitter* b);

49

50 virtual void Update(float msec);

51

52 protected:

53 Sound* sound;

54 OALSource* currentSource;

55 SoundPriority priority;

56 Vector3 position;

57 float volume;

58 float radius;

59 bool isLooping;

60 float timeLeft;

61 };

SoundEmitter.h

14

Class file

Our class definition begins with the easy bits - constructors and destructors. Both constructors
call our Reset function, with the overridden constructor also immediately calling SetSound. Our
destructor is pretty simple - all it has to do is make sure its OpenAL source is detached, as other-
wise we might end up permanently losing our limited number of sound sources if they get attached
to a temporary SoundEmitter such as a gunshot. The Reset function sets our SoundEmitter member
variables to some sensible defaults.

1 #include "SoundEmitter.h"

2

3 SoundEmitter :: SoundEmitter(void) {

4 Reset ();

5 }

6 SoundEmitter :: SoundEmitter(Sound* s) {

7 Reset ();

8 SetSound(s);

9 }

10

11 void SoundEmitter :: Reset() {

12 priority = SOUNDPRIORTY_LOW;

13 volume = 1.0f;

14 radius = 500.0f;

15 timeLeft = 0.0f;

16 isLooping = true;

17 currentSource = NULL;

18 sound = NULL;

19 }

20

21 SoundEmitter ::~ SoundEmitter(void) {

22 DetachSource ();

23 }

SoundEmitter.cpp

Our sound system is going to order SoundEmitters by their priority, using the STL sort function. To
do so, we need a function that takes in two SoundEmitters and returns a bool - you may remember
we did this to sort SceneNodes by their distance from the camera in an earlier tutorial. Although
we’re using an enum to store our priority, remember an enum value is just an unsigned integer,
and so can easily be compared against.

24 bool SoundEmitter :: CompareNodesByPriority(SoundEmitter *a,

25 SoundEmitter* b) {

26 return (a->priority > b->priority) ? true : false;

27 }

SoundEmitter.cpp

In order to play a new sound, we need to ’reset’ how long is left of the sound to play to the length
of the new sound. We’re also going to detach the current source, if any, to make sure the old sound
doesn’t continue playing.

28 void SoundEmitter :: SetSound(Sound *s) {

29 sound = s;

30 DetachSource ();

31 if(s) {

32 timeLeft = s->GetLength ();

33 }

34 }

SoundEmitter.cpp

15

Now for the important bit - attaching and detaching OpenAL sound sources to our SoundEmitters.
OpenAL sources are represented by the OALSource struct, which has two values, a bool to mark
whether it’s in use or not, and an OpenAL ’name’ for the source. To attach a SoundEmitter to the
source, we need to first mark the OALSource as in use, and then set two important values - the
radius of the SoundEmitter, and the OpenAL reference distance - this determines how quickly the
sound coming from the source fades away with distance, and marks the point at which the volume
has faded by 50%. In both cases, we use the alSourcef function, which behaves in a similar way to
many OpenGL functions - the function name determines what the function operates on (in this case a
source), the f determines it is float data we are using, the first parameter is an OpenAL name, then
an API defined constant (in this case AL MAX DISTANCE and AL REFERENCE DISTANCE),
and finally the value to send.

Then, using the alSourcei function, we attach an OpenAL buffer to the source - the buffer of the cur-
rent Sound. We can set the current playing position for the current sound using the AL SEC OFFSET
constant, which should be set to the length of the Sound, minus how much of the Sound there is left
to play - remember, when a source is attached, the source doesn’t know how much of a sample is
’supposed’ to have been played. For example, imagine a radio playing a song in a game; we might
move out of its radius and then back towards it, so we need to make sure it is always playing its song
from the correct place. lastly, we instruct the OpenAL sound source to start playing, appropriately
enough with the alSourcePlay function.

35 void SoundEmitter :: AttachSource(OALSource* s) {

36 currentSource = s;

37

38 if(! currentSource) {

39 return;

40 }

41 currentSource ->inUse = true;

42

43 alSourcef(currentSource ->source , AL_MAX_DISTANCE , radius);

44 alSourcef(currentSource ->source , AL_REFERENCE_DISTANCE ,

45 radius * 0.2f);

46 alSourcei(currentSource ->source ,AL_BUFFER ,sound ->GetBuffer ());

47 alSourcef(currentSource ->source ,AL_SEC_OFFSET ,

48 (sound ->GetLength ()/ 1000.0) - (timeLeft / 1000.0));

49 alSourcePlay(currentSource ->source);

50 }

SoundEmitter.cpp

Detaching a sound source is easier - we mark it as not in use, and silence it by setting its volume to
0, and using the alSourceStop API function to stop it from continuing playback. Just to make sure
the ’old’ sound doesn’t continue to play, we also use the alSourcei function in conjunction with the
AL BUFFER constant again, sending a value of 0 - just like in OpenGL, a value of 0 ’turns off’ a
feature.

51 void SoundEmitter :: DetachSource () {

52 if(! oalSource) {

53 return;

54 }

55 alSourcef(oalSource ->source ,AL_GAIN ,0.0f);

56 alSourceStop(oalSource ->source);

57 alSourcei(oalSource ->source ,AL_BUFFER ,0);

58

59 oalSource ->inUse = false;

60 oalSource = NULL;

61 }

SoundEmitter.cpp

16

Next, we need to define the Update function, which updates the currently attached OpenAL source
(if one exists), as well as calculating how long of the current sound is left (line 63). On line 65, we
increment how long of the sample is left if the sound is supposed to loop - play its sound sample over
and over again. Beginning on line 68, we begin the process of updating the current OpenAL source.
We must tell it the SoundEmitters current position, whether it is looping or not, its volume, and its
radius. Why do we have to set these values every frame? First off, the SoundEmitter might have a
different source attached than the previous frame, and accessor functions like SetVolume might also
have been called. It’s easier to just always set these values than it is to add in logic for detecting
when an attached source has changed, and whether a value has changed. On line 72 set the OpenAL
source’s position to that of our SoundEmitter - if it has a current target SceneNode, we get its position,
otherwise we’ll just use the value of the member variable position.

62 void SoundEmitter :: Update(float msec) {

63 timeLeft -= msec;

64

65 while(isLooping && timeLeft < 0.0f) {

66 timeLeft += sound ->GetLength ();

67 }

68

69 if(oalSource) {

70 Vector3 pos;

71

72 if(target) {

73 pos = target ->GetWorldTransform (). GetPositionVector ();

74 }

75 else {

76 pos = this ->position;

77 }

78

79 alSourcefv(oalSource ->source ,AL_POSITION ,(float *)& pos);

80

81 alSourcef(oalSource ->source , AL_GAIN ,volume);

82 alSourcei(oalSource ->source , AL_LOOPING ,isLooping ? 1 : 0);

83 alSourcef(oalSource ->source , AL_MAX_DISTANCE , radius);

84 alSourcef(oalSource ->source , AL_REFERENCE_DISTANCE ,radius *0.2f);

85 }

86 }

SoundEmitter.cpp

That’s everything for the SoundEmitter class. We could abstract out the OpenAL specific parts
of our SoundEmitter class, via an OpenALSoundEmitter subclass, if we wanted to have a choice of
audio libraries. But for the purposes of this tutorial, the current design is fine.

The SoundSystem class

Time for the final, but most important class - the sound system itself! We’re going to make a
SoundSystem class to encapsulate all of the workings of our sound engine, just like OGLRenderer and
Renderer encapsulate all of the tricky parts of graphics rendering. Like the PhysicsSystem, it is a
Singleton - a way of making a single, globally accessible class. Not everyone is a fan of the Singleton
’design pattern’ - some even call it an ’anti-pattern’, but for our needs, it’s ideal. A Singleton is a
type of class where only one instance is ever created, and is globally accessible via a static accessor
function. It will let us access the sound system from anywhere in our game’s code, allowing sounds
to be played from anywhere without having to pass a pointer around. As we only need one sound
system, it makes sense to limit the class to a single instantiation.

17

Header file

Before we create the SoundSystem class, though, we need to include OpenAL, and define a struct -
the OALSource struct introduced earlier. In it we only have two values, a bool to determine whether
the source is in use or not, and an OpenAL ’name’ for the source.

1 #pragma once

2

3 #include <vector >

4 #include <algorithm >

5

6 #include "Sound.h"

7 #include "SoundEmitter.h"

8 #include "../ OpenAL 1.1 SDK/include/al.h"

9 #include "../ OpenAL 1.1 SDK/include/alc.h"

10

11 using std:: vector;

12

13 class SoundEmitter;

14

15 struct OALSource {

16 ALuint source;

17 bool inUse;

18

19 OALSource(ALuint src) {

20 source = src;

21 inUse = false;

22 }

23 };

SoundSystem.h

Now for the SoundSystem class itself. We’re going to have the constructor and destructor pro-
tected, just like with the Sound class, and instead handle the lifetime of our SoundSystem using two
static functions Initialise and Destroy, as well as the GetSoundSystem accessor function mentioned
earlier.
Our Initialise function takes an optional unsigned integer, channels. This can be used to limit the
number of individual sources OpenAL will try to generate - handy for limiting the performance hit of
our new SoundSystem on resource limited devices!

24 class SoundSystem {

25 public:

26 static void Initialise(unsigned int channels = 32) {

27 if(! instance) { instance = new SoundSystem(channels);}

28 }

29

30 static void Destroy () {delete instance ;}

31

32 inline static SoundSystem* GetSoundSystem () {return instance ;}

SoundSystem.h

In our SoundSystem, we need to have a listener object of some sort, to determine the spatialisation
and volume of the sounds we want played. We could use a Camera for this purpose, or maybe a
GameEntity ; instead, we’ll use a simple Matrix4 containing the orientation and position of whatever
we want to be our sound ’origin’, and update it every frame inside the UpdateGame function of the
GameClass. This way, it doesn’t matter what class type we take our positional information from, as
long as we can turn it into a matrix. Our only other public functions are an Update function, which
takes a millisecond float value, and a SetMasterVolume function.

18

We also need some way of adding and removing SoundEmitters from the control of our SoundSys-
tem, in the same way as we do for SceneNode’s in the Renderer, and RigidBodies in the PhysicsSystem.

33 void SetListenerTransform(const Matrix4&transform) {

34 listenerTransform = transform;

35 }

36 Matrix4 GetListenerTransform () {

37 return listenerTransform;

38 }

39 void AddSoundEmitter(SoundEmitter* s) {emitters.push_back(s);}

40 void RemoveSoundEmitter(SoundEmitter*s);

41

42 void Update(float msec);

43

44 void SetMasterVolume(float value);

SoundSystem.h

In our protected section, we have our constructor and destructor, and some functions that will
update the OpenAL listener, obtain, attach and detach sources, and culling nodes from processing
if they are too far away. For our member variables, we have a vector to store our OpenAL sources,
a vector to store the SoundEmitters the SoundSystem will be processing in the current update, a
pointer to a listener SceneNode, a master volume, and a couple of OpenAL specifics - one for an
OpenAL context, and one for a device, both of which were covered earlier.

45 protected:

46 SoundSystem(unsigned int channels = 32);

47 ~SoundSystem(void);

48

49 void UpdateListener ();

50 void UpdateTemporaryEmitters(float msec);

51

52 void DetachSources(vector <SoundEmitter *>:: iterator from ,

53 vector <SoundEmitter *>:: iterator to);

54 void AttachSources(vector <SoundEmitter *>:: iterator from ,

55 vector <SoundEmitter *>:: iterator to);

56

57 void CullNodes ();

58 OALSource* GetSource ();

SoundSystem.h

Lastly, we have a static pointer to an instance of a SoundSystem - this is what makes this class
a ’Singleton’ - it has one actual instance which will always be returned and operated on.

59 Matrix4 listenerTransform;

60 float masterVolume;

61 ALCcontext* context;

62 ALCdevice* device;

63 SceneNode* listener;

64

65 vector <OALSource*> sources;

66 vector <SoundEmitter*> emitters;

67 vector <SoundEmitter*> frameEmitters;

68

69 static SoundSystem* instance;

70 };

SoundSystem.h

19

Class file

As the Singleton pattern used for our SoundSystem means we have a static member variable, we
must define it, so the first thing we do after including the header file, on line 3, is to define it as
defaulting to NULL - the Initialise static function checks for NULL to ensure only one SoundSystem
is created.

In our constructor, we start by outputting a list of OpenAL compatible devices (line 12). It is
possible to select a specific device from this list if we want, but for the purposes of this tutorial we’re
just going to let OpenAL decide what the best device for our OpenAL context is - passing a NULL
value to the OpenAL function alcOpenDevice function will make OpenAL choose for us. On line 21
we output the name of the device OpenAL chose, and then, on line 23, we initialise a new OpenAL
context on the device, and then make it the currently active context (we could have multiple contexts
if we liked, but only one will be processed at a time).

On line 26 we tell OpenAL which distance model to use for its volume calculations - we can have
sounds that get exponentially quieter as the listener moves away from them, or, as we’re going to use,
linearly quieter with distance. We’re also going to clamp the maximum volume of each sound source,
so we don’t get too large a disparity in volume as we move towards a source.

1 #include "SoundSystem.h"

2

3 SoundSystem* SoundSystem :: instance = NULL;

4

5 SoundSystem :: SoundSystem(unsigned int channels) {

6 listener = NULL;

7 masterVolume = 1.0f;

8

9 cout << "Creating SoundSystem!" << endl;

10

11 cout << "Found the following devices: "

12 << alcGetString(NULL ,ALC_DEVICE_SPECIFIER) << endl;

13

14 device = alcOpenDevice(NULL); //Open the ’best’ device

15

16 if(! device) {

17 cout << "SoundSystem creation failed! No valid device!" << endl;

18 return;

19 }

SoundSystem.cpp

20 cout << "SoundSystem created with device: "

21 << alcGetString(device ,ALC_DEVICE_SPECIFIER) << endl;

22

23 context = alcCreateContext(device ,NULL);

24 alcMakeContextCurrent(context);

25

26 alDistanceModel(AL_LINEAR_DISTANCE_CLAMPED);

SoundSystem.cpp

That’s the basics of OpenAL all set up - not much to it! We must do one last thing though, and
generate an appropriate number of OpenAL sources to attach to the SoundEmitters in our game.
OpenAL doesn’t currently have any easy method of determining how many sources it has available,
so all we can do is keep asking it to give us new sources until we either a) run out of available sources,
or b) hit our maximum number of channels. To generate a new OpenAL source, we simply use the
alGenSources function, passing it a reference to an unsigned int - just like with buffers, and just
like with OpenGL. If the operation completed successfully, we can add the name to a new OALSource,

20

and put it in our sources vector. If it failed, determined by the return value of the debug function
alGetError, we break out of the generation loop.

27 for(unsigned int i = 0; i < channels; ++i) {

28 ALuint source;

29

30 alGenSources (1,& source);

31 ALenum error = alGetError ();

32

33 if(error == AL_NO_ERROR) {

34 sources.push_back(new OALSource(source));

35 }

36 else{

37 break;

38 }

39 }

40 cout << "SoundSystem has " << sources.size()

41 << " channels available!" << endl;

42 }

SoundSystem.cpp

To destroy our SoundSystem, we tell OpenAL not to use its context any more, then delete all of
our OALSources and the sources they represent, before finally destroying our context and closing the
OpenAL device.

43 SoundSystem ::~ SoundSystem(void) {

44 alcMakeContextCurrent(NULL);

45 for(vector <OALSource *>:: iterator i = sources.begin ();

46 i != sources.end (); ++i) {

47 alDeleteSources (1, &(*i)->source);

48 delete (*i);

49 }

50 alcDestroyContext(context);

51 alcCloseDevice(device);

52 }

SoundSystem.cpp

OpenAL has its own internal master volume, which we can set with a positive float. We’re going
to sanity check our value to clamp it between 0.0 and 1.0 for safety, using a combination of the max
and min functions. Once the volume has been clamped, it can be sent to OpenAL using the OpenAL
function alListenerf, which as you might expect, is used to control OpenAL state in relation to the
listener object.

53 void SoundSystem :: SetMasterVolume(float value) {

54 value = max (0.0f, value);

55 value = min (1.0f, value);

56 masterVolume = value;

57 alListenerf(AL_GAIN ,masterVolume);

58 }

SoundSystem.cpp

Every time we update the SoundSystem, we need to update the listener position and orientation,
taken from the world-space transformation matrix of the SceneNode that has been set as the lis-
tener object. Both the position and orientation are set using the alListenerfv function, which takes
a pointer to some float data - a Vector3 in the case of position, and two Vector3s for the orienta-
tion. Orientation is determined via an up direction and a forward direction, both of which we can get

21

from the the transformation matrix directly - the y (’up’) and z (’forward’) axis rotations, respectively.

59 void SoundSystem :: UpdateListener () {

60 if(listener) {

61 Vector3 worldPos = listenerTransform.GetPositionVector ();

62

63 Vector3 dirup [2];

64 // forward

65 dirup [0].x = -listenerTransform.values [2];

66 dirup [0].y = -listenerTransform.values [6];

67 dirup [0].z = -listenerTransform.values [10];

68 //Up

69 dirup [1].x = listenerTransform.values [1];

70 dirup [1].y = listenerTransform.values [5];

71 dirup [1].z = listenerTransform.values [9];

72

73 alListenerfv(AL_POSITION ,(float *)& worldPos);

74 alListenerfv(AL_ORIENTATION ,(float *)& dirup);

75 }

76 }

SoundSystem.cpp

Now for the Update function, which should be called by an application’s main loop, passing the
number of milliseconds that have passed. Every update, our SoundSystem must do the following:

1) Update the listener object
2) Update all sound emitters sound states
3) Cull nodes that won’t be heard, or who don’t have sounds etc
4) Sort the remaining nodes by their priority
5) Detach sources from nodes that are too low priority when there’s not enough sources to go around
6) Attach sound sources to high priority nodes that don’t have sources
7) Clear the frameEmitters vector, ready for the next frame.

This process will ensure that the most important sounds in your game world are played, at the
expense of temporarily losing low priority sounds if there are not enough channels to go around. Even
if a SoundEmitter is to be ’culled’ this frame (due to being too far away, or whatever other reason
needed), it should still be updated via its Update function - it may get a sound source next frame, and
so it must always accurately reflect its sound playback state. Emitters that aren’t culled are instead
placed in a frameEmitters vector, which is then sorted if necessary, and OpenAL sources attached to
them.

77 void SoundSystem :: Update(float msec) {

78 UpdateListener ();

79

80 for(vector <SoundEmitter *>:: iterator i = emitters.begin ();

81 i != emitters.end (); ++i) {

82 frameEmitters.push_back ((*i));

83 (*i)->Update(msec);

84 }

85

86 CullNodes ();

SoundSystem.cpp

22

87 if(frameEmitters.size() > sources.size ()) {

88 std::sort(frameEmitters.begin(), frameEmitters.end(),

89 SoundEmitter :: CompareNodesByPriority);

90

91 DetachSources(frameEmitters.begin ()+(sources.size ()+1),

92 frameEmitters.end ());

93 AttachSources(frameEmitters.begin(),

94 frameEmitters.begin() + sources.size ());

95 }

96 else{

97 AttachSources(frameEmitters.begin(), frameEmitters.end ());

98 }

99

100 frameEmitters.clear ();

101 }

SoundSystem.cpp

To correctly allocate our limited OpenAL sources, we must cull SoundEmitters that definitely won’t
need one this update - those that are too far away, aren’t currently playing a sound, or who have
completed playing their sound. We can easily work out if a node is too far away by calculating its
distance from the listener by taking the Length of the direction vector between them - if it is greater
than the SoundEmitter’s radius, it’s too far away and should be culled. As we iterate through the
list, nodes that are culled are removed from the current frame’s vector of nodes, and we make sure it
doesn’t have a source, by calling DetachSource.

102 void SoundSystem :: CullNodes () {

103 for(vector <SoundEmitter *>:: iterator i = frameEmitters.begin ();

104 i != frameEmitters.end ();) {

105 SoundEmitter*e = (*i);

106

107 float length;

108

109 if(e->target) {

110 length = (listenerTransform.GetPositionVector () -

111 e->target ->GetWorldTransform (). GetPositionVector ()). Length ();

112 }

113 else{

114 length = (listenerTransform.GetPositionVector () -

115 e->position). Length ();

116 }

117

118 if(length > e->GetRadius () || !e->GetSound () ||

119 e->GetTimeLeft () < 0) {

120 e->DetachSource ();

121 i = frameEmitters.erase(i);

122 }

123 else{

124 ++i;

125 }

126 }

127 }

SoundSystem.cpp

To easily attach and detach sound sources from the nodes in our vector, we have two helper func-
tions, that both take iterators. Using these, we can call a function on only a subset of the vector
- in this case, we want to sort the vector by its priority, and detach sources from SoundEmitters
at the end of the vector, and attach them to those at the front. For example, if we have 8 sound

23

sources, and 10 SoundEmitters ordered from highest to lowest priority wanting sources, we make sure
that SoundEmitters 9 and 10 have any source they are using detached from them, to guarantee that
SoundEmitters 1 to 8 get sources. When attaching sources to nodes, there’s no point attaching a
new source if a SoundEmitter already has one attached (from a previous frame, for example), so on
line 131, we check for that before giving a SoundEmitter a new source, obtained via another helper
function, GetSource.

128 void SoundSystem :: DetachSources(vector <SoundEmitter *>:: iterator from ,

129 vector <SoundEmitter *>:: iterator to) {

130 for(vector <SoundEmitter *>:: iterator i = from; i != to; ++i) {

131 (*i)->DetachSource ();

132 }

133 }

134

135 void SoundSystem :: AttachSources(vector <SoundEmitter *>:: iterator from ,

136 vector <SoundEmitter *>:: iterator to) {

137 for(vector <SoundEmitter *>:: iterator i = from; i != to; ++i) {

138 if(!(*i)->GetSource ()) {

139 (*i)->AttachSource(GetSource ());

140 }

141 }

142 }

SoundSystem.cpp

The last function we need is used to obtain a source - we simply iterate over the vector of OALSources
we filled up in the constructor, and find the first that is not marked as in use, mark it so, and return it.

143 OALSource* SoundSystem :: GetSource () {

144 for(vector <OALSource *>:: iterator i = sources.begin ();

145 i != sources.end (); ++i) {

146 OALSource*s = *i;

147 if(!s->inUse) {

148 return s;

149 }

150 }

151 return NULL;

152 }

SoundSystem.cpp

SoundSystem Initialisation

To use our new sound playback capability, we simply have to call its Initialise function somewhere in
the main function:

1 SoundSystem :: Initialise ();

main.cpp

When we’re done with it, we should call Destroy - but don’t forget to also call DeleteSounds on
the SoundManager class we defined earlier!

2 SoundManager :: DeleteSounds ();

3 SoundSystem :: Destroy ();

main.cpp

24

In order to keep our SoundSystem updated, we need to call its Update function somewhere - the
UpdateCore function of the GameClass seems a good place!

4 SoundSystem :: GetSoundSystem ()->Update(msec);

5 // SoundSystem :: GetSoundSystem ()->Update ((1000.0f / (float)RENDER_HZ));

main.cpp

Finally, to test your new sound system, you might want to make a function inside the MyGame
class that will place a SoundEnity (a GameEntity with a SoundEmitter member variable) somewhere
in your gameworld, maybe with a sphere mesh so you can see where it’s been placed (handy for de-
bugging!):

1 GameEntity* MyGame :: BuildSoundEntity () {

2 float size = 300 + (rand ()%300);

3

4 SceneNode* s = new SceneNode(sphere);

5

6 s->SetModelScale(Vector3(size ,size ,size));

7 s->SetBoundingRadius(size);

8 s->SetColour(Vector4 (1 ,1 ,1 ,0.6)); //Make node transparent , too

9 //Pick a sound from a list of filenames

10 Sound*snd = SoundManager :: GetSound(soundNames[rand ()% NUM_SOUNDS]);

11 //and set it on a new SoundEntity

12 SoundEntity*g = new SoundEntity(snd , s, NULL);

13 // Randomly place it in the world somewhere

14 Vector3 randpos = Vector3 ((rand ()%10)*256 , 0.0f,(rand ()%10)*256);

15 randpos -= Vector3 ((rand ()%10)*256 , 0.0f,(rand ()%10)*256);

16

17 s->SetTransform(Matrix4 :: Translation(randpos));

18 // Connect it to all of our core systems

19 g->ConnectToSystems ();

20

21 return g;

22 }

MyGame.cpp

Tutorial Summary

In this workshop tutorial, you’ve learned how sound is encoded as PCM data, and how to load this
data from a WAV file. You’ve learned a bit about how the OpenAL API works, and what goes
into making a working sound system, including how to deal with a limited number of sound output
resources. From this basic sound system, you should be able to create aurally rich environments for
your games, and enhance their immersion. To round off this audio workshop, next time we’ll be
looking at a few extra features to enhance your sound system - triggering the playing of sounds both
in 3D space and straight to the audio hardware, and streaming audio data from a file, which will allow
effective playing of long samples such as music.

Further Work

1) OpenAL allows a source to have a pitch set on it, by using alSourcef and a parameter type of
AL PITCH. Try giving each SoundEmitter a varying pitch to see how the pitch effects a sound. If
a pitch of 0.5 is used, how much longer will a sound take to play? What effect will this have on the
timeLeft variable?

25

2) So far, our SoundEmitters have just had a radius, meaning sound is emitted equally in all di-
rections. However, OpenAL also allows a cone of sound, with differing volumes inside and outside of
the cone. Investigate the AL CONE OUTER ANGLE parameter. How will you determine the
direction a SoundEmitter is facing in, to set the direction of the cone?

3) As well as pitch, OpenAL supports the calculation of the doppler effect - how the pitch of a
sound changes in relation to the relative velocities of the listener and sound source. Think about the
siren on a police car or ambulance, it’s pitch appears to change as the vehicle drives past. Investigate
the velocity component of a source and the listener, and the usage of the functions alDopplerFactor
and alSpeedOfSound. If doppler effects pitch, will it effect playback rate?

4) Try setting the optional parameter of the Sound::Initialise function in the main file to a low
value like 4 - you should hear that some sounds get disabled, as there aren’t enough channels to play
them. Try changing the for loop to add in lots of new SoundEmitters! Once you’ve got your head
around the sound system and how it works, try combining it with your coursework projects to make
the in game nodes have sounds attached to them.

Credits

All of the sounds provided in this workshop are courtesy of the contributors to Freesound.org - a
collaborative database of Creative Commons Licensed sounds. The original authors of the sounds are
as follows:

S: arpegthing.wav by Votives
http://www.freesound.org/people/Votives/sounds/139320/

S: The Road - A Melody From The Past.mp3 by Vosvoy
http://www.freesound.org/people/Vosvoy/sounds/142010/

S: Sheeheep.wav by HerbertBoland
http://www.freesound.org/people/HerbertBoland/sounds/75190/

S: war.wav by Syna-Max
http://www.freesound.org/people/Syna-Max/sounds/56900/

S: steps-on-stone01.ogg by Erdie
http://www.freesound.org/people/Erdie/sounds/41579/

S: LaserRocket2.wav by EcoDTR
http://www.freesound.org/people/EcoDTR/sounds/36847/

S: canon.aif by man
http://www.freesound.org/people/man/sounds/14615/

26

